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TURING MACHINES 

TMs finite, finite description. 

Model computation, and sophisticated 

methods. 

Theoretical model of a computing machine. 

As powerful as any other computer device. 

Has many properties… 

 

A1 A2  A3                         

An  B 
… 



PARTS OF A TM 

• Semi-infinite input tape, containing an input 

word (string). 

• Tape made of individual cells. 

• Cells hold a symbol from the tape alphabet 

. 

• Read-write head reads then           prints a 

symbol. 

• Then head shifts one cell left or right. 

• TM changes state internally. 
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TM DESCRIPTION 

7 TUPLE, M = (Q, , , , QO, B, QACCEPT) 

• Q [finite set of states] 

•  [gamma, the tape alphabet] 

• B  [the blank symbol, B  ] 

•  [sigma, the input alphabet] 

•  [delta, the transition function] 

• qo [initial state, qo  Q] 

• qaccept [accept state] 

• qreject [reject state] 

 



LIMITS TO TMS 

• There are limits to the power of TMs. 

• A TM continues until it reaches accept state, or 

reject state where it will halt. 

• If it never reaches one, then it continues computing 

forever. 

• There exists problems that TMs cannot solve. 

• These problems contain no effective procedure and 

no recursive computation exists. 

• The problems unsolvable by TMs are also 

unsolvable by any equivalent formal programming 

systems. 



INTRO TO THE HALTING PROBLEM 

• The best known problem that is unsolvable by a TM 

is the Halting Problem. 

• “Given an arbitrary Turing Machine T as input and 

equally arbitrary tape t, decide whether T halts on 

t.” 

• Basically TM that takes a TM, T as its input, and 

simulates the T running on input t, and returns or 

decides whether or not T halts on t. 

• Can a TM accept a TM as input? (important to 

understand) 

• 3 Examples. 



CAN A TM ACCEPT A TM AS INPUT? 

EXAMPLE 1. 

• Consider a Universal Turing Machine. 

• UTMs represent the set of all possible TMs, and all 

possible effective procedures. 

• UTMs take input in the form (dT, t).  

• UTMs mimics the action of an arbitrary TM, T by reading 

its description off the tape, and simulates its behavior on 

t. 

• Produces the same result as T. 

• Simple TMs can also take descriptions 

 of other TM as input. 
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CAN A TM ACCEPT A TM AS INPUT? 

EXAMPLE 2. 

 TMs can be encoded as words, (strings) for other 

TMs.   

 M = (Q, , , , qo, B, qaccept) 7-tuples, only 4 are 

important. 

 Represent finite set of states Q = {qo, q1, …} as a 

string in binary using unary conversion (n+1 ones 

represent n). 

 Represent  alphabet, 0, 1, move left, move right as a 

string of different size blocks of ones. 

 Represent current state and next state transitions as a 

string using unary conversion. 

 Use 0s as delimiters between strings. 

 These 4 strings together make one string, the 

description of T. 



CAN A PROGRAM ACCEPT A PROGRAM AS INPUT? 

EXAMPLE 3. 

• Yes as a string, consider the valid C program. 

 

 

 

 

• The string of a valid C program 

  input for another program. 

 

 

• Once compiled, this is translated to machine language, then 
translated to a string of 0s and 1s. 



MACHINE T AS INPUT AND EQUALLY 

ARBITRARY TAPE T, DECIDE WHETHER 

T HALTS ON T.” 
 

• Formulate a proof, suppose such a machine does exist, call it TH.  

• Let t be input for T.  

• Let T be encoded as a description for TH. 

• If T  accepts and halts on t, 

 then TH will give an equivalent  

 result and transfer to the halting 

 “yes” state. 

• If T does not halt on t, then TH will 

 transfer to the halting “no” state. 

• If TH exists, then we can construct 

 another machine TH’ by modifying 

 TH. 
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CONSTRUCT A NEW MACHINE TH’ 

• Add another machine Tc (or some 

 extra code) that makes a copy of 

 dT and hands it to TH’s initial 

 state. 

• Alter TH so that it decides if T  

 halts on dT rather than t. 

• TH‘s only job is to decide if T halts on dT. 

• If TH’ exists, then we can construct 

 another machine by modifying 

 TH’. 
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CONSTRUCT A NEW MACHINE TH’’ 

 Alter TH’’s two halting transitions so that the yes and 

no state are diverted to two new states. 

 The yes transition goes from 

 q1 to qn, once in qn it will never 

 halt (infinite loop). 

 The no transition goes from 

 q1 to qh a halting state. 
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THE HALTING PROBLEM 

 If TH’’ exists, then we can input its own 

description dTH’’. 

Case 1: If TH’’ halts on dTH’’ , then TH’’ does not 

halt on dTH’’ because of an endless loop. 

Case 2: If TH’’  does not halt on dTH’’ ,  

 then TH’’  does halt on dTH’’ . 

This contradicts that TH ever existed  

 in the first place. 

The Halting Problem is not solvable 

 by any TM. 
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THE HALTING PROBLEM IS NOT 

POSSIBLE IN C .  

• Assume a Halts() function exists. Input the c 
program from earlier into the function. 

 

• Imagine the function Halts(program, input). 

 

 

 

• If Halts exists it is guaranteed to return. 

 

 



THE HALTING PROBLEM IS NOT 

POSSIBLE IN C. 

• Observe the new program in C. Save the program as 
diagonal.c 

• Run diagonal and add its own source code as input. 

• Halts(diagonal, diagonal)  

 results in two cases. 

• Returns 0, then diagonal 

 loops forever, but this can only 

 happen if Halts returns 1. 

• Returns 1, then diagonal 

 halts, but this can only happen 

 if Halts returns 0. 

• This contradiction means the  

 Halts() function cannot exist. 



DIFFERENCE BETWEEN UTMS AND THE TM IN THE 

HALTING PROBLEM.  

• It’s true that UTMs can simulate the behavior of any arbitrary 
TM T on its input t (including itself), and get the same result as 
T. 

• Whether T halts and accepts, or halts and rejects, or runs 
infinitely a UTM will do the same. 

• But a UTM or any TM cannot decide, or return a result that 
says if an arbitrary T will halt on an arbitrary t. 

• The code for such a machine cannot exist because if it did, by 
the definition of the machine itself it should accept it’s own 
code and not contradict itself. 

 



QUESTIONS 

 How is a TM converted into input for another TM? 

 Why can’t we code Halts function in C? 
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