
THE HALTING PROBLEM

OVERVIEW

• Review TMs

• Parts of a TM

• Description of a TM

• Intro to Halting Problem

• Can a TM accept a TM as input?

• The Halting Problem Proof

• The Halting Problem is not possible in C

• UTMs and the TM in the Halting Problem

• References

TURING MACHINES

TMs finite, finite description.

Model computation, and sophisticated

methods.

Theoretical model of a computing machine.

As powerful as any other computer device.

Has many properties…

A1 A2 A3

An B
…

PARTS OF A TM

• Semi-infinite input tape, containing an input

word (string).

• Tape made of individual cells.

• Cells hold a symbol from the tape alphabet

.

• Read-write head reads then prints a

symbol.

• Then head shifts one cell left or right.

• TM changes state internally.

A1 A2 A3

An B
…

TM DESCRIPTION

7 TUPLE, M = (Q, , , , QO, B, QACCEPT)

• Q [finite set of states]

• [gamma, the tape alphabet]

• B [the blank symbol, B]

• [sigma, the input alphabet]

• [delta, the transition function]

• qo [initial state, qo Q]

• qaccept [accept state]

• qreject [reject state]

LIMITS TO TMS

• There are limits to the power of TMs.

• A TM continues until it reaches accept state, or

reject state where it will halt.

• If it never reaches one, then it continues computing

forever.

• There exists problems that TMs cannot solve.

• These problems contain no effective procedure and

no recursive computation exists.

• The problems unsolvable by TMs are also

unsolvable by any equivalent formal programming

systems.

INTRO TO THE HALTING PROBLEM

• The best known problem that is unsolvable by a TM

is the Halting Problem.

• “Given an arbitrary Turing Machine T as input and

equally arbitrary tape t, decide whether T halts on

t.”

• Basically TM that takes a TM, T as its input, and

simulates the T running on input t, and returns or

decides whether or not T halts on t.

• Can a TM accept a TM as input? (important to

understand)

• 3 Examples.

CAN A TM ACCEPT A TM AS INPUT?

EXAMPLE 1.

• Consider a Universal Turing Machine.

• UTMs represent the set of all possible TMs, and all

possible effective procedures.

• UTMs take input in the form (dT, t).

• UTMs mimics the action of an arbitrary TM, T by reading

its description off the tape, and simulates its behavior on

t.

• Produces the same result as T.

• Simple TMs can also take descriptions

 of other TM as input.

descrption of T input t

B
…

CAN A TM ACCEPT A TM AS INPUT?

EXAMPLE 2.

 TMs can be encoded as words, (strings) for other

TMs.

 M = (Q, , , , qo, B, qaccept) 7-tuples, only 4 are

important.

 Represent finite set of states Q = {qo, q1, …} as a

string in binary using unary conversion (n+1 ones

represent n).

 Represent alphabet, 0, 1, move left, move right as a

string of different size blocks of ones.

 Represent current state and next state transitions as a

string using unary conversion.

 Use 0s as delimiters between strings.

 These 4 strings together make one string, the

description of T.

CAN A PROGRAM ACCEPT A PROGRAM AS INPUT?

EXAMPLE 3.

• Yes as a string, consider the valid C program.

• The string of a valid C program

 input for another program.

• Once compiled, this is translated to machine language, then
translated to a string of 0s and 1s.

MACHINE T AS INPUT AND EQUALLY

ARBITRARY TAPE T, DECIDE WHETHER

T HALTS ON T.”

• Formulate a proof, suppose such a machine does exist, call it TH.

• Let t be input for T.

• Let T be encoded as a description for TH.

• If T accepts and halts on t,

 then TH will give an equivalent

 result and transfer to the halting

 “yes” state.

• If T does not halt on t, then TH will

 transfer to the halting “no” state.

• If TH exists, then we can construct

 another machine TH’ by modifying

 TH.

 dT t

B
…

true
ye

s
no

q1

CONSTRUCT A NEW MACHINE TH’

• Add another machine Tc (or some

 extra code) that makes a copy of

 dT and hands it to TH’s initial

 state.

• Alter TH so that it decides if T

 halts on dT rather than t.

• TH‘s only job is to decide if T halts on dT.

• If TH’ exists, then we can construct

 another machine by modifying

 TH’.

 dT

B
…

true
ye

s
no

TC

TH’

d

T

q1

CONSTRUCT A NEW MACHINE TH’’

 Alter TH’’s two halting transitions so that the yes and

no state are diverted to two new states.

 The yes transition goes from

 q1 to qn, once in qn it will never

 halt (infinite loop).

 The no transition goes from

 q1 to qh a halting state.

 dT

B
…

true
ye

s
no

TH’’

d

T

q1

qh qn

THE HALTING PROBLEM

 If TH’’ exists, then we can input its own

description dTH’’.

Case 1: If TH’’ halts on dTH’’ , then TH’’ does not

halt on dTH’’ because of an endless loop.

Case 2: If TH’’ does not halt on dTH’’ ,

 then TH’’ does halt on dTH’’ .

This contradicts that TH ever existed

 in the first place.

The Halting Problem is not solvable

 by any TM.

 dTH’’

B

true
ye

s
no

d

T

q1

qh qn

…

2

1

THE HALTING PROBLEM IS NOT

POSSIBLE IN C .

• Assume a Halts() function exists. Input the c
program from earlier into the function.

• Imagine the function Halts(program, input).

• If Halts exists it is guaranteed to return.

THE HALTING PROBLEM IS NOT

POSSIBLE IN C.

• Observe the new program in C. Save the program as
diagonal.c

• Run diagonal and add its own source code as input.

• Halts(diagonal, diagonal)

 results in two cases.

• Returns 0, then diagonal

 loops forever, but this can only

 happen if Halts returns 1.

• Returns 1, then diagonal

 halts, but this can only happen

 if Halts returns 0.

• This contradiction means the

 Halts() function cannot exist.

DIFFERENCE BETWEEN UTMS AND THE TM IN THE

HALTING PROBLEM.

• It’s true that UTMs can simulate the behavior of any arbitrary
TM T on its input t (including itself), and get the same result as
T.

• Whether T halts and accepts, or halts and rejects, or runs
infinitely a UTM will do the same.

• But a UTM or any TM cannot decide, or return a result that
says if an arbitrary T will halt on an arbitrary t.

• The code for such a machine cannot exist because if it did, by
the definition of the machine itself it should accept it’s own
code and not contradict itself.

QUESTIONS

 How is a TM converted into input for another TM?

 Why can’t we code Halts function in C?

REFERENCES

• Dewdney, A. K. The New Turing Omnibus. 2001. New York.
Chapter 59 “The Halting Problem.”

• Greenlaw, R., Hoover, H. James. Fundamentals of Theory of
Computation. Morgan Kaufmann Publishers, Inc. 1998. San
Francisco, California. Chapter 1 “Some Computing Puzzles.”

• Homer, S., Selman, Alan L. Computability and Complexity
Theory. Texts in Computer Science. 2001 Springer-Verlag
New York, Inc. Chapter 1 “Introduction to Computability,” and
Chapter 3 “Undecidability.”

• Stanford Encyclopedia of Philosophy. Feb. 01, 2008.

 <http://plato.stanford.edu/entries/turing-machine/>

http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/

